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Abstract—This study concerns the temperature waves generated in a packed bed by a change in the inlet
temperature of a percolating fluid. The shape of these waves, and their deformation as they propagate, can
be considerably affected by the variation of specific heats and specific volumes with temperature. Two
qualitatively different behaviours are theoretically illustrated. For example when the temperature of air,
flowing through a bed of glass beads, is raised from 20 to 100°C, the resulting temperature wave is
‘dispersive’ in the sense that it spreads more and more as it propagates, under the effect of the changes in
densities and heat capacities of the two phases. A similar but weaker effect occurs for systems CO,—glass
and water—glass. On the other hand, a bed of lead beads percolated by carbon dioxide will exhibit a
‘compressive’ trend resulting in a steady and sharp ‘shock wave’. All trends are reversed when a cooling
step is considered instead of a heating step. These effects are illustrated using a simplified model that
neglects convective dispersion and heat transfer resistances between the two phases. The quantitative
importance of the spreading is compared to that due to convective axial dispersion, by evaluating the
corresponding Péclet numbers. Depending on the operating conditions the effect illustrated may be
predominant (mostly in gas—solid systems and/or at low Reynolds number) or negligible (mostly in liquid—
solid systems and/or at high Reynolds). Accounting for the spreading effect (or sharpening effect) due to
property variations is thought to be important in the interpretation of fixed-bed experiments, for example
when heat transfer coefficients are evaluated from such experiments.
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INTRODUCTION

NuMEroUs models have been developed for describing
the propagation of temperature fronts in packed beds
percolated by a fluid [1-10]. These models take into
account various non-idealities such as flow dispersion
and diffusional heat transfer in the fiuid phase and in
the solid phase. By contrast, the physical properties
of the fluid and the solid (densities, specific heats) are
usually treated as averaged constants. The aim of the
present text is not to propose an additional model,
but to give some insight into the effect of the variability
of these physical properties with temperature, in the
range 0~100°C. For this purpose, we shall neglect all
other non-idealities, and assume non-dispersed piston
flow, local thermal equilibrium between phases and
negligible pressure gradients in the bed. On the other
hand, we shall consider that the enthalpies of the
phases are non-linear functions of temperature
through variable specific heats and variable specific
volumes of the fluid and the solid. The effect of these
assumptions on the shape (the dispersion) of the tem-
perature fronts will then be discussed.

CONSERVATION EQUATIONS
AND GENERAL SOLUTIONS

With the assumptions mentioned above, we may
write a differential enthalpy balance, a differential
mass conservation relation for the fluid and a mass

conservation relation for the solid in the following
forms:

7 0
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This equation implies that no condensation,
adsorption or phase change exist, so that the only
mechanisms for fluid accumulation in the bed are the
density change of the gas and/or the porosity change
of the packing.

%[(1 —8)p] =0 or pl—e)=constant. (3)

The latter equation indicates that a decrease in den-
sity due to swelling of the particles results in a decrease
of the inter-particle void fraction, and that no expan-
sion of the bed as a whole occurs. Equation (3) may
be used in the following form to eliminate variations
in porosity terms in equations (1) and (2):
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Substitution of equation (4) in the developed form of
equation (2) gives:
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heat capacity [kJ kg~ “C—]

dispersion coefficient [m? s~ ']

particle diameter [m]

molecular diffusivity (equal to

0.18 x 10~* for air) [m?s ']

mass flow rate per unit cross-sectional

porous area (kg s~''m~?)

enthalpy [kJ kg—']

L total bed length [m]

Pe Péclet number based on column length

due to hydrodynamic dispersion
equivalent Péclet number due to variation

of physical properties with temperature

R heat capacity ratio, equation (7)

Re Reynolds number, (prud,/y)

S¢  Schmidt number, (u¢/p% )

T temperature [°C]

¢t time [s]

t, mean exit time of a temperature wave {s]

u  superficial velocity of fluid [m s ']

SEENE

=

Pe
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NOMENCLATURE

u;  interstitial velocity of fluid [m s ']
z  space variable along axis of the column
(m]

vy velocity of propagation [m s~']

Greek symbols
o linear expansion coefficient [°C~']
f cubical thermal expansion coefficient
rC)

¢  void fraction of packed bed

i viscosity [P1]

p  density [kgm~7]

g’ variance of the temperature distribution
Subscripts

e final

f  fluid

i initial

s solid

0 relative to the inlet of the column (z = 0).

Substitution of both equations (4) and (5) into (1)
yields

Ohe h, Ohy
ez +(1—B)PSE +uprg—0~ 6
This form is identical to that which would be obtained
by assuming that &, p;, p, and u are constant. Here,
all these quantities are functions of temperature. The
enthalpy balance, equation (6), may be further
developed by expressing the enthalpies in terms of
specific capacities at constant pressure. Letting :

1—e)p.C,.
£piCy
be the heat capacity ratio (dimensionless), we can
write equation (6) in the form:

oT; 0T, udlT;

— - =0 8

a RN e T ®
with the assumption of thermal equilibrium,

T = T; = T, and defining the interstitial velocity as:
u, = ufe 9)
equation (8) becomes :

6T+ u ol
dt  1+R oz

(10)

This quasi-linear, homogeneous, first-order partial
differential equation is a ‘kinematic wave’ equation,
and expresses the propagation of a value of tem-
perature T at a velocity v such that:

0T/t u,

0z
”T=<E)=‘QWMZ=I+R‘ (b

It is possible to associate uniquely a velocity to any
temperature if we can express v; and R as a function
of temperature alone. This is a relatively simple matter
for R, which contains only physical properties, that are
supposed to be known as a function of T: p,, pr, Cyy,
C,s. The porosity ¢ is related to p, through equation (3)
and therefore known as a function of 7. On the other
hand, in order to express the velocity u, we need to
use the fluid conservation equation (2), together with
the dependence on T of the physical parameters.

This is done as follows. Let us introduce the thermal
expansion coefficients of both phases:

1 dp
=T (12)

Using equation (4), the mass balance on the fluid,

equation (2) may then be rewritten as:

1—e _\oT oT Oy
—<ﬂf+ Tlﬁ)*a“t —ufis+ =0 (13)
dT/0t may be eliminated from equation (13) by using
(10) to get:

0T 1 oy
TN g+ 5 =0 (14
with
T——LGLE R> 15
ST =\ B=RE).(9)

The velocity u; may then in principle be obtained as
a function of temperature by integration of equation
(14) over the variable z, considering f(T) as a known
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function of T—this yields:

T(z,1)

In w(z, ) = In uy(r) + f(rydr  (16)

Ty

where u;,(?) is the value of the interstitial velocity at
the bed inlet (z = 0), which may be a function of time,
depending on the inlet condition. T is the inlet tem-
perature. Equation (16) may be written, after taking
the exponential

u; = uio(g(To, T)

where g(T, T') is a supposedly known function of the
inlet temperature and of the local temperature.

The abscissa z of a temperature T at any time f may
then be expressed by combining equations (11) and
(17) and integrating over time:

17

4 t

9(Ty, T)

2(f)—z(ty) = J vrde = m / u(t). (18)

0

However complex this procedure may seem in the
general case, it will be seen to be quite straightforward
in some common practical situations. In the following,
we shall apply this approach to different fluid—solid
systems, illustrating different thermal behaviours of
the packed bed. The systems considered involve
common glass or lead beads as solid ; and air, carbon
dioxide or water as fluid.

GAS-SOLID SYSTEMS

Simplified form of general solutions

The general equation can be considerably simplified
when the fluid is a gas, as is shown below. For the
air—glass system, one can see in Table A1 (Appendix)
that in the temperature range 0-100°C, the relative
variation of p, is about 0.2%, more than 100 times
smaller than the relative variation of p;. This con-
clusion remains valid not only for the other gas—solid
systems of Table Al but also for other solids such as

Table 1. Gas—solid systems. Values of R [equation (7

1023

Si0,, Al,O; and other gases such as CH,. The result
is that the porosity variation due to dilatation may be
neglected and that the term (1 —¢)8,/¢ in the function
f(T) [equation (15)] is negligible.

The equations of state of most gases under usual
conditions imply :

prT” = constant

(19)

(as is the case for example for the ideal gas law or
Van der Waals’ equation). The thermal expansion
coefficient is then:

1 0p; 1
bi=— =7 (20)
Moreover, owing to the large value of R (between
1000 and 4000, see Table 1), the ratio R/(1+R) is
practically constant and equal to 1.

With these approximations, equation (14) becomes

simply :
10T\ 1 (ou 21
T\ 82 A 52_, @n
which is integrated into:
u(z, 1) T(z,1) u
(0,0 - T(0, 1) 7= constant. (22)

The local velocity is thus simply related to the local
temperature and to the inlet conditions (z = 0). Notice
also that the specific mass flux G (mass flow rate per
unit cross-sectional porous area) is the same at any
axial position and equal to its inlet value. This results
from equations (19) and (22), which allows us to write :

G = pet; = prottip = G, (23)
the subscript 0 referring to the bed inlet (z = 0). Equa-
tions (19), (22) and (23) imply that any change in mass
flow rate and/or temperature at the bed inlet will
immediately affect the velocity of all temperatures
downstream.

)] and p«{1+ R) (physical properties from Table A1)

T Air-glass Air-lead CO,—glass COy-lead
(°C) R p(1+R) R p(1+R) R p(1+R) R p(1+R)
0 2188 2830 1687 2183 1753 3445 1352 2657
10 2314 2891 1750 2187 1836 3481 1388 2632
20 2442 2946 1815 2190 1920 3515 1427 2613
30 2577 3006 1881 2194 2004 3549 1462 2590
40 2713 3064 1945 2197 2092 3585 1500 2571
50 2855 3124 2011 2201 2181 3622 1536 2551
60 2994 3178 2076 2204 2268 3653 1573 2534
70 3142 3237 2143 2208 2359 3688 1608 2515
80 3290 3294 2207 2210 2452 3726 1645 2500
90 3443 3354 2273 2215 2545 3760 1680 2483
100 3593 3407 2338 2217 2636 3793 1716 2467
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F1G. 1. Variation with temperature of the product p(1+ R)
for different gas—solid pairs (p = 1 atm).

The instantaneous velocity of propagation v, of
any temperature, given by equation (11) may now be
expressed as:

_u uoT _ G,
T 14R (1+RT, p{(1+R)

The denominator is a function only of the temperature
considered; G, may be a function of time. If G, is
constant, v7is a constant for a given temperature. The
abscissa of the temperature T at time ¢ is given in the
general case by equation (18) as:

vr 24

G,dt.

1
P+R) ), 23)

z())—z(ty) =
The case of sharp temperature steps. Dispersive and
compressive behaviour
Let us now consider the effect of a sharp change in
inlet temperature (step change) at time ¢ = 0, while
the mass flux G, is maintained constant. This step
disturbance generates a moving temperature dis-
tribution in the bed (a wave) from the initial to the
final value of T. Each value of T in this distribution

C. Roizarp and D. TONDEUR

moves at any time with a constant velocity v; given
by equation (24). Since p1+ R) depends on tem-
perature, each value of T moves in general with a
different velocity, and therefore the shape of the wave
is expected to change as it propagates.

To illustrate this, let us consider first the air—glass
system, and submit the packed bed to a heating
process, that is to a positive temperature step. For
example, starting with the bed uniformly at 20°C, we
increase the inlet air temperature from 20 to 100°C.
The data of Table 1, represented in Fig. 1, show that
in this temperature range, p{l1+ R) increases with
temperature, practically linearly and by about 17%.
Equation (24) thus implies that high temperatures
move slower than low temperatures, and therefore the
temperature wave tends to spread as it propagates
through the bed, as illustrated by Fig. 2.

This so-called ‘dispersive’ behaviour is thus the result
of variations in densities and heat capacities (capacitive
factors), and not of flow dispersion (convective factor),
axial diffusion (diffusive factors), or finite rates of heat
transfer (resistive factors), which have been neglected
in the present model. In physical reality, the four types
of factors mentioned will contribute to the overall
dispersion. Notice also that the linearity of p(1+4 R)
with T entails that the temperature distributions T vs
z resulting from a perfectly sharp step are straight
(Fig. 2).

Applying the same approach to the other systems,
itis seen that a similar dispersive behaviour is obtained
with the CO,—glass system, although the cor-
responding wave is less dispersed, because the vari-
ation of p(1+ R) is smaller (less than 10%). In the
system air-lead, the product p{(1+ R) is practically
constant, and therefore there is no dispersion due to
the capacitive factors.

By contrast, in the CO,-lead system, p.(l1+ R)
decreases as temperature increases, and thus high tem-
peratures tend to move faster than low temperatures.
If the inlet disturbance is not a sharp jump but say a
ramp, the resulting wave is initially spread, but will
tend to sharpen or ‘recompress’. This so-called ‘com-
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F1G. 2. Propagation of a temperature wave in a packed bed of glass beads percolated by air, illustrating
dispersive behaviour of an initially sharp wave (calulated). G, = 488 kg m~2 h~!; initial 7 = 20°C;
inlet T = 100°C.
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Fi1G. 3. Propagation of a temperature wave in a packed bed of lead particles percolated by CO,, illustrating
compressive behaviour of an initially dispersed wave (calculated). G, = 488 kg m~? h~'; initial T = 20°C;

inlet 7=

pressive’ behaviour is illustrated in Fig. 3. Clearly, if
the process was continued, say in a longer column,
or alternately if the inlet disturbance were sharp, a
perfectly sharp wave (a discontinuity in temperature)
would result. From then on, the higher temperatures
can no longer move faster than the lower ones, since
this would result in an ‘overhanging’, multivalued
temperature distribution—a physically unrealistic
situation. The physical reality is the formation of a
steady shock, a non-equilibrium situation in which the
sharpening tendency due to the capacity factors is
counterbalanced by the dispersive effects of convec-
tive, diffusive and resistive factors. The wave then
takes a steady shape, a constant pattern, such that all
values of temperatures move at the same velocity.
Thermal equilibrium between the two phases may no
longer be assumed, and the detailed description of
the shape of the shock wave requires accounting
for a finite rate of heat transfer. The formation
of shocks as the result of a compressive behaviour is
conceptually and mathematically the same as that
encountered in aerodynamics, hydraulics, chroma-
tography [11, 12], heat storage with phase change
[13, 14], and is studied at length in the literature of
these fields. Our purpose here is merely to show that
such behaviour may occur in common systems under
the effect of the dependency of density and heat
capacity on temperature.

It is straightforward to transpose the foregoing dis-
cussion to the case of a cooling process, that is to a
decrease in inlet gas temperature. The type of be-
haviour observed is then reversed : the air—glass sys-
tem will display a compressive behaviour and the CO,—
lead system a dispersive behaviour. A reversal of the
behaviour is also obtained by flow reversal ; for exam-
ple, if the heating process of glass beads with air is
stopped while the dispersive temperature wave is still
in the bed, and cooling is started by flowing cold air
at the previously outlet end (thus by reversing the
flow), the temperature wave recompresses and eventu-
ally tends to become a shock {14].

100°C.

A more quantitative evaluation of these effects is
presented in a later section.

LIQUID-SOLID SYSTEMS

In liquid—solid systems, it may appear reasonable
to neglect the thermal expansion of both phases, and
to account only for variations of specific heats, that
is of R. The useful consequence of this assumption is
that the velocity 4, may be considered as constant. We
shall first assess the validity of this assumption by
comparing the results of the rigorous and the approxi-
mate calculations.

Let us consider the water—glass system, for which
the pertinent physical data are reported in Table Al.
The function f(T') [equation (15)] is calculated vs tem-
perature (Table 2) and plotted on Fig. 4, together

= x,
.
= 20 \
2 x,
~
< \\
N
30 X
\x
aol— | | | 1 | 1 | | il

10 20 30 40 650 60 70 80 90 (00
Temperature T (°C)

FIG. 4. Variation with temperature of the function f [equ-
ation (15)]. x x x x Data points from Table 2 ; —— poly-
nomial fitting.



1026

C. Roizarp and D. TONDEUR

Table 2. Water—glass system

T Rp; (1—e)B e J(T) ™T)
°C) R & x 10° x 10° x 10° = 10°
10 0.6894 0.39986 5.66 3.8272 —1.085 —1.61
20 0.7068 0.39969 14.60 3.8300 —6.310 —6.05
30 0.7249 0.39954 22.15 3.8323 —10.621 —10.24
40 0.7428 0.39940 28.90 3.8346 —14.529 —14.17
50 0.7614 0.39923 35.21 3.8373 —17.972 —17.84
60 0.7795 0.39909 41.22 3.8395 —21.006 —21.26
70 0.7989 0.39892 47.13 3.8423 —24.065 —24.42
80 0.8184 0.39877 52.98 3.8447 —27.020 —27.33
90 0.8382 0.39863 58.84 3.8469 -29914 —29.98
100 0.8573 0.39846 64.70 3.8496 —32.764 -32.37

*LHTY = 1.28 x 107372 —4.826 x 10757+ 3.08667 x 10~°.

with an analytical fitting by a third-degree polynomial:

SXT)=aT*+bT+c (Tin “C) (26)
where
a=1280x10"%; b=-4826x10"°,
c=3.087x10"%
Equation (14) is now rewritten :
(aT2+bT+c)%§+%i%uZ—i=0 27N
which may be integrated on z to give:
u; = uo exp [P(Ty)— P(T)] (28)
with
P(T) = Jf*(T) dT = gi + %L +cT

u,, and T, are values at the bed inlet (z = 0). For a
step change of the inlet temperature at z = 0, and with
constant inlet flow rate u,, equations (11) and (18)
become :

exp [P(Ty) — P(T')]

Ur = Uy —m‘— (29

z=uv

(30)

which have been used to calculate the values of vr, in
Table 3 and to generate the profiles of Fig. 5. vy is
seen to decrease as temperature increases (high tem-
peratures are slower than low temperatures), and
therefore the heating wave of Fig. 5 disperses as it
propagates in the bed.

If the thermal expansion of both water and glass
are neglected [B;and f; are zero in equation (15)], f(T)
is zero and the velocity v [equation (29)} is given more
simply by :

_ Wo
T 14+R

vr (31
The values vrcalculated using this equation are
reported in Table 3 and compared to the rigorous
values vr,. The differences are less than 2%, and cer-
tainly less than the uncertainty of the values of the
physical properties. It is therefore clear that for the
water—glass system, and in the temperature range con-
sidered, neglecting thermal expansion introduces no
significant error.

QUANTITATIVE EVALUATION OF
THE DISPERSIVE EFFECT

The purpose of the present section is to compare
the quantitative importance of the wave spreading due

Table 3. Water-glass system : Propagation velocities. Positive step change : Inlet
temperature 7'(z = 0) = 100°C. Initial temperature uniform in the bed: 20°C,

Ug=2254mh"!
T or(mh =) x10 vp(mh-)x10 (o5, —ovp ),
O P(T) equation (29)  equation (31) %)
20 3.14x107* 1.296 1.319 —-1.7
30 1.13x 1077 1.283 1.305 —1.6
40 235%x1073 1.274 1.292 —-1.5
50 396 x 1077 1.260 1.275 —1.3
60 591x107? 1.251 1.265 —1.1
70 8.20x107? 1.242 1.251 -09
80 1.079x 10-2 1.229 1.238 -0.6
90 1.366 x 102 1.220 1.224 —-03
100 1.678 x 1072 1.211 [.211 0.0
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F1G. 5. Propagation of a dispersive temperature wave in a

packed bed of glass beads percolated by hot water (cal-
culated). 4, = 22.5mh~';initial T = 20°C;inlet T = 100°C.

to variations in physical properties to the spreading
due to common convective axial dispersion. For this
purpose, let us consider the dispersive heating waves
for the air-glass and the water—glass systems (Figs. 2
and 5), and let us treat these waves as if their spreading
resulted only from convective axial dispersion of the
fluid. Using the properties of the classical model for
axially dispersed plug flow in packed beds [1, 2], we
can relate the measured variance o2 of the temperature
distribution to an equivalent column Péclet number
by:

Pe =

Q'\:‘ [

(32)

S| &

The variance is measured, as indicated for example
by Villermaux [2] and summarized in Fig. 6, on a
normalized temperature vs reduced time curve. These
curves have been drawn on Fig. 7 for the two systems
considered from the profiles of Figs. 2 and 5, with
a bed length of 1 m. The equivalent column Péclet
numbers obtained via equation (32) are:

Pe,, ~ 600
Pe,, ~ 2700.

The column length, the particle diameter and the

air—glass

water—glass
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FiG. 6. Graphical determination of standard deviation ¢
on normalized effluent temperature history (schematic)
(¢, = mean exit time of the curve).
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F1G. 7. Normalized temperature histories in a bed of glass
beads percolated by air (—-—-) and by water (—) (cal-
culated). ¢,(air) = 6.51 h; 7 (water) = 0.08 h.

mass flow rates in the two systems were chosen so that
the flow regimes be the same. More precisely, we took :

ReSc(air) = Re(water)

with values of 0.1, 1 and 10, for particles diameters of
0.04, 0.4 and 4 mm ; G and L were kept constant at
the values of Figs. 2 and 5.

The hydrodynamic particle Péclet numbers under
these conditions can be estimated from the published
correlations with the Reynolds number or the product
ReSc(for gases) [2, 3] and the column Pe is then simply
obtained by multiplying by the ratio L/d, of bed to
particle size. We then get the results listed in Table 4.

Comparing Pe to the values of Pe,,, it follows that:

—the equivalent Péclet numbers are equal to or much
smaller than Pe in the air-glass system, which
means that the spreading of the temperature wave
due to variation of the gas density and of the ratio
of specific heats is of the same order or much
greater than the spreading due to convective
dispersion, and may not be neglected without
care;

—in the water—glass system, Pe., is about 20 times
larger than Pe for d, = 4 mm, but five times smaller
for d, = 0.04 mm, therefore the spreading due to
variation of specific heats may be safely neglected
with respect to convective dispersion in the first case
but not in the second case.

The equivalent Péclet numbers are found to be
about 90,000 for the air-lead system, implying in gen-
eral a negligible contribution to spreading, and about
2200 for the CO,—glass system, implying a negligible
spreading only at high values of ReSc.

Table 4
Gas-solid Liquid-solid
Pe Pe
ReSc (column) Re (column)
0.1 10,000 0.1 12,500
1 5750 1 1250
10 625 10 125
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CONCLUSIONS

The dependence on temperature of the densities and
specific heats of the two phases (capacitive effect) may
in some cases affect significantly the shape and defor-
mation of the temperature waves generated in per-
colated packed beds by changes in the fluid tempera-
ture. Depending on the properties of the two phases

and on the direction of the temperature change, the.

effect may be either to spread the wave more and more
as it propagates, or on the contrary, to sharpen it to
a constant-shaped shock.

This effect is likely to be negligible with respect to
convective axial dispersion in liquid-solid systems, at
least for particles larger than 1 mm. The effect is likely
to be larger and to over-run convective dispersion
in gas—solid systems and also for smaller particles
(convective dispersion is then smaller and fluid—-solid
transfer faster, while the capacity effect is not affected
by particle size). However, no general conclusion
should be drawn, and each particular case should be
carefully examined. This may be especially important
when temperature waves are used for example to
obtain fluid-solid heat transfer coefficients. These may
be underestimated when the dispersive behaviour is
neglected ; the spreading measured may then be attri-
buted unduly to a low transfer coefficient.

On the contrary, when a compressive effect exists,
the sharpness of the wave may be attributed unduly
to a high heat transfer coefficient, which will thus be
overestimated.

The approaches presented here are suitable for eval-
uating the quantitative importance of the capacitive
effect. For this purpose, in liquid-solid systems, the
thermal expansion of the phases may be neglected,
and the linear interstitial velocity may be considered
independent of temperature. Only the variation in
specific heats (the ratio R) needs to be accounted for.
In gas—solid systems, the approach implies negligible
pressure drop in the packing, with respect to the abso-
lute pressure. Thermal expansion of the solid may be
neglected, and it may be assumed that the gas density
is inversely proportional to temperature. Then the
local interstitial velocity is proportional to the local
temperature and the mass flux is the same throughout
the bed (of course, it is assumed no adsorption or
phasge change occurs). The velocity distribution, thus

C. Ro1zarDp and D. TONDEUR

the wave spreading, is then determined by the vari-
ation with 7 of the product p(1+ R).

I

2.

10.
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APPENDIX: PHYSICAL PROPERTIES
OF SOLIDS AND FLUIDS

The materials considered previously are common glass and lead as solids; air, carbon dioxide and water as fluids. The
variation of densities and heat capacities with temperature are indicated in Table A1. In the calculations, algebraic expressions
for the solids and the gases were used, which are given below. For water, the data from (15) and (19) were used in numerical

form.

For solids [15-17]

_ p:(0)
= T1pT

{p,inkgm™)
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with g the cubical expansion coefficient: §# = 3« ; and « being the linear expansion coefficient

C, =a+bT (C,inkJkg™°C™)

with
ps(0) x a b
(kg m~) Cc (kJkg='°C™Y) (I kg™'°C?)
Common glass 2500 85%x 1077 0.7535 1.67 x 103
Lead 11,374 29x 10~ 0.1165 4.078 x 10~°
For gases 18]
PM  cste
2 : -3 7
Pr="g7 T (peinkgm 3, T'inK)
Cp = (@+bT+cT?+dT?) x 4.183/M (CpinkJ kg™ 'K, TinK)
with
P = latm
R = 0.0821 atmm*kmol 'K’
M
Gas (kg kmol ") a b ¢ d
Air 29 6.713 4.697 x 10~ 11.47x 107 —4.696 x 10710
CO, 44 5.316 142.85x 104 —83.62x 107 17.84 x 1010

TRANSFERT THERMIQUE DANS UN LIT FIXE PERCOLATEUR AVEC EFFETS DES
PROPRIETES PHYSIQUES VARIABLES AVEC LA TEMPERATURE

Résumé—Cette étude concerne les ondes de température créées dans un lit fixe par un changement de
température du fluide percolant. La forme et la déformation de ces ondes dépend considérablement de la
variation des propriétés physiques avec la température (chaleurs specifiques et masses spécifiques). On
illustre théoriquement deux comportements qualitativement différents. Par exemple si de I’air, traversant
un lit de billes de verre, subit un échelon de chauffe a 'entrée (de 20 & 100°C), 'onde de température qui
en résulte est ‘dispersive’, en ce sens qu’elle s’élargit de plus en plus 4 mesure qu’elle se propage, sous le
seul effet de variation des propriétés physiques des deux phases. Le méme comportement est observé, avec
des intensités plus faibles, pour les systémes CO,—verre et eau-verre. Au contraire, un lit de grains de plomb
percolé par du gaz carbonique donne lieu & un comportement ‘compressif’, qui engendre une ‘onde de
choc’ de forme abrupte et constante. Ces effets sont étudiés a 1'aide d’un modéle simple qui néglige la
dispersion convective et ’écart a I'équilibre thermique local des deux phases, pour ne prendre en compte
que la dépendance des chaleurs et masses spécifiques a 'égard de la température. L'importance quantitative
de D'effet dispersif est comparé a la dispersion convective, en évaluant les nombres de Péclet respectifs.
Suivant les conditions opératoires et le systéme considéré, I'effet étudié peut étre prédominant (cas fréquent
des systémes gaz-solide, et/ou des nombres de Reynolds faibles) ou négligeable (cas fréquent des systémes
liquide-solide, et/ou des nombres de Reynolds €levés). Il peut étre important de tenir compte de ces effets
pour interpréter des expériences de transfert de chaleur en lit fixe, en particulier lorsqu’il s’agit d’estimer
des coefficients de transfert & partir de telles expériences.

DER WARMEUBERGANG IN DURCHSTROMTEN FESTBETTEN MIT
TEMPERATURABHANGIGEN PHYSIKALISCHEN EIGENSCHAFTEN—
EINSCHNUR- UND AUSBREITUNGSEFFEKTE

Zusammenfassung—Diese Untersuchung bezieht sich auf Temperaturwellen, die in einem Festbett durch
Anderung der Eintrittstemperatur des strémenden Fluids erzeugt werden. Die Form dieser Wellen und ihre
Verformung wihrend des Fortschreitens kdnnen durch die temperaturbedingte Anderung der spezifischen
Wirmen und der spezifischen Volumina stark beeinfluBt werden. Zwei qualitativ unterschiedliche Ver-
haltensweisen werden theoretisch dargelegt. Wird beispielsweise die Temperatur der durch ein Bett aus
Glaskugeln strémenden Luft von 20°C auf 100°C erhéht, so ist die resultierende Temperaturwelle in dem
Sinne dispers, daB sie sich unter dem EinfluB der Anderungen von Dichte und Warmekapazitit der beiden
Phasen, beim Fortschreiten mehr und mehr verbreitert. Ein dhnlicher aber schwicherer Effekt tritt fiir die
Systeme CO,/Glas und Wasser/Glas auf. Andererseits wird ein Bett aus Bleikugeln, das von Kohlendioxid
durchstromt wird, eine einengende Wirkung aufweisen, die in einer stetigen und steilen ‘Schock-Welle’
zum Ausdruck kommt. Alle Tendenzen kehren sich um, wenn statt einer Temperaturerhdhung eine
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Temperaturerniedrigung aufgeprigt wird. Die genannten Effekte werden anhand eines einfachen Modells,
das Wirmeausbreitung durch Konvektion und Warmeiibergangswiderstinde zwischen den beiden Phasen
vernachlissigt, dargelegt. Die quantitative Bedeutung der Spreizung wird mit der aufgrund von konvektiver
axialer Ausbreitung verglichen, wofiir die korrespondierenden Péclet-Zahlen ermittelt werden. Abhédngig
von den Betriebsbedingungen kénnen die dargelegten Einfliisse bestimmend sein (meist in Gas/Feststoff-
Systemen und/oder bei kleinen Reynolds-Zahlen) oder vernachlissigbar (meist in Fliissig/Feststoff-
Systemen und/oder bei hohen Reynolds-Zahlen). Die Beriicksichtigung des Ausbreitungseffekts (oder Einen-
gungseffekts) durch die Anderung der Eigenschaften scheint bei der Interpretation von Festbettexperi-
menten wichtig zu sein, wenn beispielsweise Warmeiibergangskoeffizienten aus derartigen Experimenten
bestimmt werden.

TETIJIONEPEHOC B ®WIBTPYIOIIUX HEMNOJABHXHBIX CJIOSAX C 3ABUCAINIMMH OT
TEMITEPATYPbI ®UINYECKUMHU CBOUCTBAMU. DPDPEKTBI CKATUSA U
PACIIMPEHHWA

Annoraums—M3yyaroTcs TemMmepaTypHbIC BOJIHBI, BO3HHKAIOLIME B IJIOTHOM CJIO€ NPH H3MCHEHHH
BXOJHOH TeMmepaTypbl punbTpyroeiics xuakoctd. PopMa BoH U Hx Aedopmauus npu pacupocTpa-
HEHMH MOTYT CYLIECTBEHHO 3aBHCETh OT H3MEHEHMA YAC/IbHOM TEIUIOEMKOCTH H 0ObeMa ¢ TeMIepaTy-
poit. TeopeTHYeCKH pacCMOTpPEHbI ABa KA4YECTBEHHO pasjiMYaroluxcs pexuma. Hampumep, B ciy4ae
BO3pacCTaHUA TEMIEPATypbl BO31yXa, MPOXOAALIETO Yepe3 CJIOH CTEeKJSHHBIX LIapHkos, oT 20 go 100°C
pe3yJIbTHpYHOLIas TeMIlepaTypHas BOJIHA SIBJAETCH “ PacCIMPAIOLICHCA” B TOM CMBICJIE, YTO MpH pac-
NPOCTPAHEHHH MO AEHCTBMEM H3MEHEHHS TJIOTHOCTEH M TemjoeMmkocTeil obenx ¢as oHa Bce Honblue
H OGosbiie pacumpsercd. IlonobHbii, Ho OGonee cnabwiit, 3pdexT HMMeeT MecTo 18 CHCTEM
CO,—cTeknsHHbIE IAPDHKH U BOAa-CTekJsHHbIE Wapukd. Hao6opoT, B ciyyae QuIbTpanuu IBYOKHCH
yriiepoga 4epe3 CIOW CBHHLUOBBIX IIAPHKOB MPOABIAETCH “cxXHMarolmit” 3¢dexT, npuBoasmi K
yCTOM4MBOI M pe3koil * yaapHoii BotHe . TenaeHuns o6paTHa, KOorjia BMECTO Harpesa pacCMaTpHBaeTCs
oxnaxzaenue. ObHapyxeHHbIe 3hdeKTH CKATHA M DPACHIHPEHUs POHJUIIOCTPHPOBAHBI C MOMOILKIO
yipolueHHo# Moxenu 6e3 y4era KOHBEKTHBHOM JMCHEPCHM M TEIUIOBOTO CONPOTHBJICHHS MEXIY
dazamu. KavecTBeHHOE BJIMSIHHE PACLIMPEHHS CPaBHMBAETCH MYTEM OLCHKH COOTBETCTBYIOLIMX YHCEN
Mexsie ¢ Bk1agOM, BHOCHMBIM KOHBEKTHBHOI oceBo# aucnepcueil. B 3aBucnMocTH oT paboynx yciaoBuil
ekt MoxkeT ObITh npeobaagarolMM (B OCHOBHOM B CHCTEMAax ra3TBEpIOE TEJI0 H/HIIM NPH HU3KHX
3HaueHusx yucen PeitHosbaca) nim npeHeOpexxuMo MaJlbiM (B OCHOBHOM B CHCTEMAaX >KHIKOCTb—TBEpPAOE
Teso W/WiH npu Gonplux yucnax PeitHonbaca). Vet addekta paciumpenus (MM cKaTHsA), BbI3BAHHBINH
H3MEHEHHEM CBOMCTB, HEOOXOANM IIPH PACCMOTPEHHHM PE3yJIbTATOB JKCIEPHMCHTOB € HEMOIABHXHBIM
CJI0EM, HAAPHMED, NIPH OlieHKe KOXDPHLMEHTOB TeNonepeHoca.
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