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Abstract-This study concerns the temperature waves generated in a packed bed by a change in the inlet 
temperature of a percolating fluid. The shape of these waves, and their deformation as they propagate, can 
be considerably affected by the variation of specific heats and specific volumes with temperature. Two 
qualitatively different behaviours are theoretically illustrated. For example when the temperature of air, 
flowing through a bed of glass beads, is raised from 20 to lOO”C, the resulting temperature wave is 
‘dispersive’ in the sense that it spreads more and more as it propagates, under the effect of the changes in 
densities and heat capacities of the two phases. A similar but weaker effect occurs for systems COTglass 
and water-glass. On the other hand, a bed of lead beads percolated by carbon dioxide will exhibit a 
‘compressive’ trend resulting in a steady and sharp ‘shock wave’. All trends are reversed when a cooling 
step is considered instead of a heating step. These effects are illustrated using a simplified model that 
neglects convective dispersion and heat transfer resistances between the two phases. The quantitative 
importance of the spreading is compared to that due to convective axial dispersion, by evaluating the 
corresponding P&let numbers. Depending on the operating conditions the effect illustrated may be 
predominant (mostly in gas-solid systems and/or at low Reynolds number) or negligible (mostly in liquid- 
solid systems and/or at high Reynolds). Accounting for the spreading effect (or sharpening effect) due to 
property variations is thought to be important in the interpretation of fixed-bed experiments, for example 

when heat transfer coefficients are evaluated from such experiments. 

INTRODUCTION 

NUMEROUS models have been developed for describing 
the propagation of temperature fronts in packed beds 
percolated by a fluid [l-lo]. These models take into 
account various non-idealities such as flow dispersion 
and diffusional heat transfer in the fluid phase and in 
the solid phase. By contrast, the physical properties 
of the fluid and the solid (densities, specific heats) are 
usually treated as averaged constants. The aim of the 
present text is not to propose an additional model, 
but to give some insight into the effect of the variability 
of these physical properties with temperature, in the 
range 0-100°C. For this purpose, we shall neglect all 
other non-idealities, and assume non-dispersed piston 
flow, local thermal equilibrium between phases and 
negligible pressure gradients in the bed. On the other 
hand, we shall consider that the enthalpies of the 
phases are non-linear functions of temperature 
through variable specific heats and variable specific 
volumes of the fluid and the solid. The effect of these 
assumptions on the shape (the dispersion) of the tem- 
perature fronts will then be discussed. 

CONSERVATION EQUATIONS 

AND GENERAL SOLUTIONS 

With the assumptions mentioned above, we may 
write a differential enthalpy balance, a differential 
mass conservation relation for the fluid and a mass 

conservation relation for the solid in the following 
forms : 

This equation implies that no condensation, 
adsorption or phase change exist, so that the only 
mechanisms for fluid accumulation in the bed are the 
density change of the gas and/or the porosity change 
of the packing. 

; ](I --&&I = 0 or p,(l -a) = constant. (3) 

The latter equation indicates that a decrease in den- 
sity due to swelling of the particles results in a decrease 
of the inter-particle void fraction, and that no expan- 
sion of the bed as a whole occurs. Equation (3) may 
be used in the following form to eliminate variations 
in porosity terms in equations (1) and (2) : 

ae l--E a& 
_--, 

at- Pi at 

Substitution of equation (4) in the developed form of 
equation (2) gives : 
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NOMENCLATURE 

C, heat capacity [kJ kg-’ X~‘] 
D dispersion coefficient [m2 s - ‘1 
d,, particle diameter [m] 
9,,, molecular diffusivity (equal to 

0.18 x IO-“ for air) [m’ s-‘1 

W interstitial velocity of fluid [m s ‘1 
- space variable along axis of the column 

L [ml 
1’7 velocity of propagation [m s- ‘1 

G mass flow rate per unit cross-sectional Greek symbols 
porous area [kg s I m ?] linear expansion coefficient [“C ‘1 

h enthalpy [kJ kg ‘1 ; cubical thermal expansion coefficient 
L total bed length [m] [“C ‘1 
Pe P&let number based on column length c void fraction of packed bed 

due to hydrodynamic dispersion p viscosity [Pl] 

Pees equivalent P&let number due to variation P density [kg m - ‘1 
of physical properties with temperature e2 variance of the temperature distribution 

R heat capacity ratio, equation (7) 
Re Reynolds number, (pru dp/pL1.) Subscripts 

SC Schmidt number, (~r/p@~) e final 

T temperature [“Cl f fluid 

t time [s] i initial 

t, mean exit time of a temperature wave [s] S solid 

U superficial velocity of fluid [m s - ‘1 0 relative to the inlet of the column (z = 0). 

Substitution of both equations (4) and (5) into (1) 

yields 

(6) 

This form is identical to that which would be obtained 
by assuming that E, pr, ps and u are constant. Here, 
all these quantities are functions of temperature. The 

enthalpy balance, equation (6) may be further 
developed by expressing the enthalpies in terms of 
specific capacities at constant pressure. Letting : 

be the heat capacity ratio (dimensionless), we can 
write equation (6) in the form : 

with the assumption of thermal equilibrium, 
T = T, = T,, and defining the interstitial velocity as : 

u, = U/E (9) 

equation (8) becomes : 

8T u, dT 
-----_O. 

dt+ I+R c3.z 

This quasi-linear, homogeneous, first-order partial 
differential equation is a ‘kinematic wave’ equation, 
and expresses the propagation of a value of tem- 
perature Tat a velocity cr such that : 

(11) 

It is possible to associate uniquely a velocity to any 

temperature if we can express ui and R as a function 
of temperature alone. This is a relatively simple matter 
for R, which contains only physical properties, that are 
supposed to be known as a function of T: ps, pr, C,,, 

C,,. The porosity E is related to ps through equation (3) 
and therefore known as a function of T. On the other 
hand, in order to express the velocity u, we need to 

use the fluid conservation equation (2), together with 
the dependence on T of the physical parameters. 

This is done as follows. Let us introduce the thermal 
expansion coefficients of both phases : 

p=-f?. 

Using equation (4), the mass balance on the fluid, 
equation (2) may then be rewritten as : 

aT/a t may be eliminated from equation (13) by using 
(10) to get : 

(14) 

with 

f(T) = & (+-Wr). (15) 

The velocity u, may then in principle be obtained as 
a function of temperature by integration of equation 
(14) over the variable z, considering f(T) as a known 
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function of T-this yields : 

s m, 0 

In Ui(Z, 1) = In &o(t) + f CT) dT 
To 

(16) 

where ui,(t) is the value of the interstitial velocity at 
the bed inlet (z = 0), which may be a function of time, 
depending on the inlet condition. To is the inlet tem- 
perature. Equation (16) may be written, after taking 
the exponential 

u, = u,,(t)g(T,, T) (17) 

where g( To, T) is a supposedly known function of the 
inlet temperature and of the local temperature. 

The abscissa z of a temperature Tat any time t may 

then be expressed by combining equations (11) and 
(17) and integrating over time : 

s ‘21 dt= g(Tm T) ’ 
z(t)--(to) = r ~ u,o(t). (18) 

‘0 s l+W) ,o 

However complex this procedure may seem in the 
general case, it will be seen to be quite straightforward 
in some common practical situations. In the following, 
we shall apply this approach to different fluid-solid 
systems, illustrating different thermal behaviours of 
the packed bed. The systems considered involve 
common glass or lead beads as solid ; and air, carbon 
dioxide or water as fluid. 

GAS-SOLID SYSTEMS 

Simplifiedform of general solutions 
The general equation can be considerably simplified 

when the fluid is a gas, as is shown below. For the 
air-glass system, one can see in Table Al (Appendix) 
that in the temperature range &lOO”C, the relative 
variation of ps is about 0.2%, more than 100 times 
smaller than the relative variation of pr. This con- 
clusion remains valid not only for the other gas-solid 
systems of Table Al but also for other solids such as 

SiO*, A120, and other gases such as CH,. The result 
is that the porosity variation due to dilatation may be 
neglected and that the term (1 - E)/?,/E in the function 
f(T) [equation (15)] is negligible. 

The equations of state of most gases under usual 
conditions imply : 

p,T = constant (19) 

(as is the case for example for the ideal gas law or 
Van der Waals’ equation). The thermal expansion 
coefficient is then : 

Moreover, owing to the large value of R (between 
1000 and 4000, see Table l), the ratio R/(1 + R) is 
practically constant and equal to 1. 

With these approximations, equation (14) becomes 
simply : 

which is integrated into : 

u,k 0 W, t) u 
- =- or - = constant. 
u,(O, t) T(O, t) T 

(22) 

The local velocity is thus simply related to the local 
temperature and to the inlet conditions (z = 0). Notice 
also that the specific mass flux G (mass flow rate per 
unit cross-sectional porous area) is the same at any 
axial position and equal to its inlet value. This results 
from equations (19) and (22), which allows us to write : 

G = pfui = proui, = G, (23) 

the subscript 0 referring to the bed inlet (z = 0). Equa- 
tions (19), (22) and (23) imply that any change in mass 
flow rate and/or temperature at the bed inlet will 
immediately affect the velocity of all temperatures 
downstream. 

Table 1. Gas-solid systems. Values of R [equation (7)] and p,-(l + R) (physical properties from Table Al) 

T Air-glass Air-lead CO,glass CO,-lead 

(“C) R ~f(l+R) R P& +R) R N+R) R dl+R) 

0 2188 
10 2314 
20 2442 
30 2577 
40 2713 
50 2855 
60 2994 
70 3142 
80 3290 
90 3443 

100 3593 

2830 
2891 
2946 

3064 
3124 
3178 
3237 
3294 
3354 
3407 

1687 2183 1753 
1750 2187 1836 
1815 2190 1920 
1881 2194 2004 
1945 2197 2092 
2011 2201 2181 
2076 2204 2268 
2143 2208 2359 
2207 2210 2452 
2273 2215 2545 
2338 2217 2636 

3445 
3481 
3515 

3585 
3622 
3653 
3688 
3726 
3760 
3793 

1352 
1388 
1427 
1462 
1500 
1536 
1573 
1608 
1645 
1680 
1716 

2657 
2632 
2613 

2571 
2551 
2534 
2515 
2500 
2483 
2467 



1024 C. ROIZARD and D. TONDEUR 
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Temperature T PC) 

FIG. I. Variation with temperature of the product or( I+ R) 
for different gas-solid pairs (p = 1 atm). 

The instantaneous velocity of propagation or of 
any temperature, given by equation (11) may now be 
expressed as : 

u, ui,T GO 
VT=-=-=-. 

l+R (l+R)T, p,(l+R) 
(24) 

The denominator is a function only of the temperature 
considered ; G,, may be a function of time. If G,, is 
constant, vr is a constant for a given temperature. The 
abscissa of the temperature Tat time t is given in the 
general case by equation (18) as : 

I ’ 
z(t)-z(t,) = ~ 

pf(l+R) ,0 Gadt. s 
(25) 

The case of sharp temperature steps. Dispersive and 
compressive behaviour 

Let us now consider the effect of a sharp change in 
inlet temperature (step change) at time t = 0, while 
the mass flux Go is maintained constant. This step 
disturbance generates a moving temperature dis- 
tribution in the bed (a wave) from the initial to the 
final value of T. Each value of Tin this distribution 

moves at any time with a constant velocity vr given 
by equation (24). Since pr(1 + R) depends on tem- 
perature, each value of T moves in general with a 
different velocity, and therefore the shape of the wave 
is expected to change as it propagates. 

To illustrate this, let us consider first the air-glass 
system, and submit the packed bed to a heating 
process, that is to a positive temperature step. For 
example, starting with the bed uniformly at 2O”C, we 
increase the inlet air temperature from 20 to 100°C. 
The data of Table 1, represented in Fig. 1, show that 
in this temperature range, ~~(1 +R) increases with 
temperature, practically linearly and by about 17%. 
Equation (24) thus implies that high temperatures 
move slower than low temperatures, and therefore the 
temperature wave tends to spread as it propagates 
through the bed, as illustrated by Fig. 2. 

This so-called ‘dispersive’ behaviour is thus the result 
of variations in densities and heat capacities (capacitive 
factors), and not offlow dispersion (convective factor), 
axial dtflusion (dtflisive factors), orjnite rates of heat 
transfer (resistive factors), which have been neglected 
in the present model. In physical reality, the four types 
of factors mentioned will contribute to the overall 
dispersion. Notice also that the linearity of pr( 1 + R) 
with T entails that the temperature distributions T vs 
z resulting from a perfectly sharp step are straight 
(Fig. 2). 

Applying the same approach to the other systems, 
it is seen that a similar dispersive behaviour is obtained 
with the CO,-glass system, although the cor- 
responding wave is less dispersed, because the vari- 
ation of ~~(1 +R) is smaller (less than 10%). In the 
system air-lead, the product pr(l +R) is practically 
constant, and therefore there is no dispersion due to 
the capacitive factors. 

By contrast, in the CO*-lead system, pr( 1 +R) 
decreases as temperature increases, and thus high tem- 
peratures tend to move faster than low temperatures. 
If the inlet disturbance is not a sharp jump but say a 
ramp, the resulting wave is initially spread, but will 
tend to sharpen or ‘recompress’. This so-called ‘com- 

t Abscissa in bed .?(cm) t 
Inlet out 14t 

FIG. 2. Propagation of a temperature wave in a packed bed of glass beads percolated by air, illustrating 
dispersive behaviour of an initially sharp wave (calulated). Go = 488 kg m- * h- ’ ; initial T = 20°C; 

inlet T = 100°C. 
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FIG. 3. Propagation of a temperature wave in a packed bed of lead particles percolated by C02, illustrating 
compressive behaviour of an initially dispersed wave (calculated). G,, = 488 kg m-2 h-’ ; initial T = 20°C; 

inlet T = 100°C. 

pressive’ behaviour is illustrated in Fig. 3. Clearly, if 
the process was continued, say in a longer column, 
or alternately if the inlet disturbance were sharp, a 
perfectly sharp wave (a discontinuity in temperature) 
would result. From then on, the higher temperatures 
can no longer move faster than the lower ones, since 
this would result in an ‘overhanging’, multivalued 
temperature distribution-a physically unrealistic 
situation. The physical reality is the formation of a 
steady shock, a non-equilibrium situation in which the 
sharpening tendency due to the capacity factors is 
counterbalanced by the dispersive effects of convec- 
tive, diffusive and resistive factors. The wave then 
takes a steady shape, a constant pattern, such that all 
values of temperatures move at the same velocity. 
Thermal equilibrium between the two phases may no 
longer be assumed, and the detailed description of 
the shape of the shock wave requires accounting 
for a finite rate of heat transfer. The formation 
of shocks as the result of a compressive behaviour is 
conceptually and mathematically the same as that 
encountered in aerodynamics, hydraulics, chroma- 
tography [l 1, 121, heat storage with phase change 
[13, 141, and is studied at length in the literature of 
these fields. Our purpose here is merely to show that 
such behaviour may occur in common systems under 
the effect of the dependency of density and heat 
capacity on temperature. 

It is straightforward to transpose the foregoing dis- 
cussion to the case of a cooling process, that is to a 
decrease in inlet gas temperature. The type of be- 
haviour observed is then reversed : the air-glass sys- 
tem will display a compressive behaviour and the CO*- 
lead system a dispersive behaviour. A reversal of the 
behaviour is also obtained by flow reversal ; for exam- 
ple, if the heating process of glass beads with air is 
stopped while the dispersive temperature wave is still 
in the bed, and cooling is started by flowing cold air 
at the previously outlet end (thus by reversing the 
flow), the temperature wave recompresses and eventu- 
ally tends to become a shock [ 141. 

A more quantitative evaluation of these effects is 
presented in a later section. 

LIQUID-SOLID SYSTEMS 

In liquid-solid systems, it may appear reasonable 
to neglect the thermal expansion of both phases, and 
to account only for variations of specific heats, that 
is of R. The useful consequence of this assumption is 
that the velocity ui may be considered as constant. We 
shall first assess the validity of this assumption by 
comparing the results of the rigorous and the approxi- 
mate calculations. 

Let us consider the water-glass system, for which 
the pertinent physical data are reported in Table Al. 
The functionf( T) [equation (15)] is calculated vs tem- 
perature (Table 2) and plotted on Fig. 4, together 

IO 20 30 40 50 60 70 80 so loo 

Temperature T (-1 

FIG. 4. Variation with temperature of the function f [equ- 
ation (15)]. x x x x Data points from Table 2; - poly- 

nomial fitting. 
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Table 2. Water-glass system 

r’c, RBf (1 -E)B,IE .f (j-1 .f*G-1 
R E x IO5 x 10s x 105 x 105 

10 0.6894 0.39986 5.66 3.8272 - 1.085 - 1.61 
20 0.7068 0.39969 14.60 3.8300 -6.310 - 6.05 
30 0.7249 0.39954 22.15 3.8323 - 10.621 - 10.24 

40 0.7428 0.39940 28.90 3.8346 - 14.529 - 14.17 
50 0.7614 0.39923 35.21 3.8373 - 17.912 - 17.84 
60 0.7795 0.39909 41.22 3.8395 -21.006 -21.26 
70 0.7989 0.39892 47.13 3.8423 - 24.065 - 24.42 
80 0.8184 0.39877 52.98 3.8447 -27.020 -27.33 
90 0.8382 0.39863 58.84 3.8469 -29.914 - 29.98 

100 0.8573 0.39846 64.70 3.8496 - 32.764 -32.37 

*f*(T) = 1.28 x lO~sI--4.826 x 10-6T+3.08667 x 10-5. 

with an analytical fitting by a third-degree polynomial: 

,f*(T) = aT”i-br+c (Tin C) (26) 

where 

a = 1.280x IO-*; b = -4.826x 10m6; 

c = 3.087 x 10m5. 

Equation (14) is now rewritten : 

(aT2+bT+c) g + u’ 2 = 0 (27) 

which may be integrated on z to give : 

u, = uao w [fYTo) - p(Ul 

with 

(28) 

P(T)= f*(r)d7=$l+k$+c7- 
s 

9 

u,~ and T,, are values at the bed inlet (z = 0). For a 
step change of the inlet temperature at z = 0, and with 
constant inlet flow rate u,,,, equations (11) and (18) 
become : 

v7 = u,. ew [p(To) -p(T)1 
1 +R(T) 

(29) 

2 = v,t (30) 

which have been used to calculate the values of v~, in 
Table 3 and to generate the profiles of Fig. 5. vr is 
seen to decrease as temperature increases (high tem- 
peratures are slower than low temperatures), and 
therefore the heating wave of Fig. 5 disperses as it 
propagates in the bed. 

If the thermal expansion of both water and glass 
are neglected [/?r and pS are zero in equation (15)],f(T) 
is zero and the velocity vr [equation (29)] is given more 
simply by : 

KO 
VT= 1+R (31) 

The values vrJcalculated using this equation are 
reported in Table 3 and compared to the rigorous 
values vr,. The differences are less than 2%, and cer- 
tainly less than the uncertainty of the values of the 
physical properties. It is therefore clear that for the 
water-glass system, and in the temperature range con- 
sidered, neglecting thermal expansion introduces no 
significant error. 

QUANTITATIVE EVALUATION OF 

THE DISPERSIVE EFFECT 

The purpose of the present section is to compare 
the quantitative importance of the wave spreading due 

Table 3. Water-glass system: Propagation velocities. Positive step change : Inlet 
temperature T(z = 0) = 100°C. Initial temperature uniform in the bed: 20°C 

u,~ = 22.54 m h-l 

20 
30 
40 
50 
60 
70 
80 
90 

100 

P(T) 

3.14 x IO-4 
1.13 x 10-j 
2.35 x 10-j 
3.96 x IO-’ 
5.91 x 10-3 
8.20 x lo-) 

1.079 x 10-Z 
1.366 x IO-’ 
1.678 x 1O-2 

+,(m h-‘) x 10 
equation (29) 

ug(m h-‘) x 10 
equation (3 I) 

1.296 1.319 - 1.7 
1.283 1.305 - 1.6 
1.274 1.292 -1.5 
1.260 1.275 - 1.3 
1.251 1.265 - 1.1 
1.242 1.251 -0.9 
1.229 1.238 -0.6 
1.220 1.224 -0.3 
1.211 1.211 0.0 
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I I I I 

‘3 JO loo 150 

Inlet Abscissa in bed 2 (cm) 

FIG. 5. Propagation of a dispersive temperature wave in a 
packed bed of glass beads Percolated by hot water (cal- 
culated). I(,~ = 22.5 m h-r ; initial T = 20°C ; inlet T = 100°C. 

to variations in physical properties to the spreading 
due to common convective axial dispersion. For this 
purpose, let us consider the dispersive heating waves 
for the air-glass and the water-glass systems (Figs. 2 
and 5), and let us treat these waves as if their spreading 
resulted only from convective axial dispersion of the 
fluid. Using the properties of the classical model for 
axially dispersed plug flow in packed beds [l, 21, we 
can relate the measured variance cr2 of the temperature 
distribution to an equivalent column P&let number 
by: 

The variance is measured, as indicated for example 
by Villermaux [2] and summarized in Fig. 6, on a 
normalized temperature vs reduced time curve. These 
curves have been drawn on Fig. 7 for the two systems 
considered from the profiles of Figs. 2 and 5, with 
a bed length of 1 m. The equivalent column P&let 
numbers obtained via equation (32) are : 

air-glass Pe,, - 600 

water-glass Pe,, - 2700. 

The column length, the particle diameter and the 

FIG. 6. Graphical determination of standard deviation B 
on normalized effluent temperature history (schematic) 

(t, = mean exit time of the curve). 

FIG. 7. Normalized temperature histories in a bed of glass 
beads Percolated by air (----) and by water (--) (cal- 

culated). t,(air) = 6.51 h; t,(water) = 0.08 h. 

mass flow rates in the two systems were chosen so that 
the flow regimes be the same. More precisely, we took : 

ReSc(air) = Re(water) 

with values of 0.1, 1 and 10, for particles diameters of 
0.04, 0.4 and 4 mm ; G and L were kept constant at 
the values of Figs. 2 and 5. 

The hydrodynamic particle P&let numbers under 
these conditions can be estimated from the published 
correlations with the Reynolds number or the product 
ReSc(for gases) [2,3] and the column Pe is then simply 
obtained by multiplying by the ratio L/d, of bed to 
particle size. We then get the results listed in Table 4. 

Comparing Pe to the values of Pecq, it follows that : 

-the equivalent P&let numbers are equal to or much 
smaller than Pe in the air-glass system, which 
means that the spreading of the temperature wave 
due to variation of the gas density and of the ratio 
of specific heats is of the same order or much 
greater than the spreading due to convective 
dispersion, and may not be neglected without 
care ; 

-in the water-glass system, Pe,, is about 20 times 
larger than Pe for d, = 4 mm, but five times smaller 
for d, = 0.04 mm, therefore the spreading due to 
variation of specific heats may be safely neglected 
with respect to convective dispersion in the first case 
but not in the second case. 

The equivalent P&let numbers are found to be 
about 90,000 for the air-lead system, implying in gen- 
eral a negligible contribution to spreading, and about 
2200 for the CO,-glass system, implying a negligible 
spreading only at high values of ReSc. 

Table 4 

Gas-solid Liquid-solid 

Pe Pe 
ReSc (column) Re (column) 

0.1 10,000 0.1 12,500 
1 5750 1 1250 

10 625 10 125 
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CONCLUSIONS 

The dependence on temperature of the densities and 
specific heats of the two phases (capacitive effect) may 
in some cases affect significantly the shape and defor- 
mation of the temperature waves generated in per- 
colated packed beds by changes in the fluid tempera- 
ture. Depending on the properties of the two phases 
and on the direction of the temperature change, the. 
effect may be either to spread the wave more and more 
as it propagates, or on the contrary, to sharpen it to 
a constant-shaped shock. 

This effect is likely to be negligible with respect to 
convective axial dispersion in liquid-solid systems, at 
least for particles larger than 1 mm. The effect is likely 
to be larger and to over-run convective dispersion 
in gas-solid systems and also for smaller particles 
(convective dispersion is then smaller and fluid-solid 
transfer faster, while the capacity effect is not affected 
by particle size). However, no general conclusion 
should be drawn, and each particular case should be 
carefully examined. This may be especially important 
when temperature waves are used for example to 
obtain fluid-solid heat transfer coefficients. These may 
be underestimated when the dispersive behaviour is 
neglected ; the spreading measured may then be attri- 
buted unduly to a low transfer coefficient. 

On the contrary, when a compressive effect exists, 
the sharpness of the wave may be attributed unduly 
to a high heat transfer coefficient, which will thus be 
overestimated. 

The approaches presented here are suitable for eval- 
uating the quantitative importance of the capacitive 
effect. For this purpose, in liquid-solid systems, the 
thermal expansion of the phases may be neglected, 
and the linear interstitial velocity may be considered 
independent of temperature. Only the variation in 
specific heats (the ratio R) needs to be accounted for. 
In gas-solid systems, the approach implies negligible 
pressure drop in the packing, with respect to the abso- 
lute pressure. Thermal expansion of the solid may be 
neglected, and it may be assumed that the gas density 
is inversely proportional to temperature. Then the 
local interstitial velocity is proportional to the local 
temperature and the mass flux is the same throughout 
the bed (of course, it is assumed no adsorption or 
phase change occurs). The velocity distribution, thus 

the wave spreading, is then determined by the vari- 
ation with T of the product pr(l+ R). 
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APPENDIX : PHYSICAL PROPERTIES 

OF SOLIDS AND FLUIDS 

The materials considered previously are common glass and lead as solids; air, carbon dioxide and water as fluids. The 
variation of densities and heat capacities with temperature are indicated in Table Al. In the calculations, algebraic expressions 
for the solids and the gases were used, which are given below. For water, the data from (15) and (19) were used in numerical 
form. 

For solids [15-171 
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with jl the cubical expansion coefficient : /I = 3a ; and a being the linear expansion coefficient 

with 

Common glass 
Lead 

For gases [ 181 

P,(O) 
(kg m-‘) 

2500 
11,374 

C,> = u+bT (C,xinkJkg-‘“C~‘) 

(kJ kg’l “C-‘) (kJ kgbl “C-‘) 

85 x lo-’ 0.7535 1.67 x lo-’ 
29 x 1O-6 0.1165 4.078 x 10ms 

pr= g = $e (prinkgme3. TinK) 

C,= (a+bT+cT2+dT3)x4.183/M (C,,inkJkgg’K-‘,TinK) 

with 

P= latm 

R = 0.0821 atmm3kmoll’K~’ 

M 
Gas (kg kmol-‘) u b c d 

Air 29 6.713 4.697 x lo-4 11.47 x 10-7 -4.696 x lO-‘O 
CO* 44 5.316 142.85 x 10m4 -83.62 x IO-’ 17.84 x lo-” 

TRANSFERT THERMIQUE DANS UN LIT FIXE PERCOLATEUR AVEC EFFETS DES 
PROPRIETES PHYSIQUES VARIABLES AVEC LA TEMPERATURE 

R&m&-Cette etude concerne les ondes de temperature c&es dans un lit fixe par un changement de 
temperature du fluide percolant. La forme et la deformation de ces ondes depend considerablement de la 
variation des proprittes physiques avec la temperature (chaleurs specifiques et masses specifiques). On 
illustre theoriquement deux comportements qualitativement differents. Par exemple si de pair, traversant 
un lit de billes de verre, subit un echelon de chauffe a l’entrie (de 20 a lOo”C), l’onde de temperature qui 
en risulte est ‘dispersive’, en ce sens qu’elle s’elargit de plus en plus a mesure qu’elle se propage, sous le 
seul effet de variation des proprittes physiques des deux phases. Le mime comportement est observe, avec 
des intensites plus faibles, pour les systbmes CO,verre et eau-verre. Au contraire, un lit de grains de plomb 
percole par du gaz carbonique donne lieu a un comportement ‘compressif’, qui engendre une ‘onde de 
choc’ de forme abrupte et constante. Ces effets sont etudiis a l’aide dun modtle simple qui neglige la 
dispersion convective et l’ecart a l’equilibre thermique local des deux phases, pour ne prendre en compte 
que la dtpendance des chaleurs et masses specifiques a l’egard de la temperature. L’importance quantitative 
de l’effet dispersif est compare a la dispersion convective, en evaluant les nombres de P&clet respectifs. 
Suivant les conditions operatoires et le systeme consider& l’effet etudie peut dtre predominant (cas frequent 
des systtmes gaz-solide, et/au des nombres de Reynolds faibles) ou negligeable (cas frequent des systemes 
liquid*solide, et/au des nombres de Reynolds eleves). 11 peut etre important de tenir compte de ces effets 
pour interpreter des experiences de transfert de chaleur en lit fixe, en particulier lorsqu’il s’agit d’estimer 

des coefficients de transfert a partir de telles experiences. 

DER WARMEtiBERGANG IN DURCHSTRGMTEN FESTBETTEN MIT 
TEMPERATURABHANGIGEN PHYSIKALISCHEN EIGENSCHAFTEN- 

EINSCHNUR- UND AUSBREITUNGSEFFEKTE 

Zusammenfassung-Diese Untersuchung bezieht sich auf Temperaturwellen, die in einem Festbett durch 
Anderung der Eintrittstemperatur des striimenden Fluids erzeugt werden. Die Form dieser Wellen und ihre 
Verformung wlhrend des Fortschreitens kijnnen durch die temperaturbedingte Anderung der spezifischen 
W&men und der spezifischen Volumina stark beeinfluuDt werden. Zwei qualitativ unterschiedliche Ver- 
haltensweisen werden theoretisch dargelegt. Wird beispielsweise die Temperatur der durch ein Bett aus 
Glaskugeln stromenden Luft von 20°C auf 100°C erhiiht, so ist die resultierende Temperaturwelle in dem 
Sinne dispers, dal3 sie sich unter dem EinfluD der Anderungen von Dichte und Wlrmekapazitat der beiden 
Phasen, beim Fortschreiten mehr und mehr verbreitert. Ein Thnlicher aber schwbherer Effekt tritt fiir die 
Systeme CO,/Glas und Wasser/Glas auf. Andererseits wird ein Bett aus Bleikugeln, das von Kohlendioxid 
durchstriimt wird, eine einengende Wirkung aufweisen, die in einer stetigen und steilen ‘Schock-Welle’ 
zum Ausdruck kommt. Alle Tendenzen kehren sich urn, wenn statt einer Temperaturerhohung eine 
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Temperaturerniedrigung aufgeprlgt wird. Die genannten Effekte werden anhand eines einfachen Modells, 
das Wiirmeausbreitung durch Konvektion und Wlrmeiibergangswiderstande zwischen den beiden Phasen 
vemachllssigt, dargelegt. Die quantitative Bedeutung der Spreizung wird mit der aufgrund von konvektiver 
axialer Ausbreitung verglichen, wofiir die korrespondierenden P&let-Zahlen ermittelt werden. Abhlngig 
von den Betriebsbedingungen kiinnen die dargelegten Einfliisse bestimmend sein (meist in Gas/Feststoff- 
Systemen und/oder bei kleinen Reynolds-Zahlen) oder vernachlassigbar (meist in Fliissig/Feststoff- 
Systemen und/oder bei hohen Reynolds-Zahlen). Die Beriicksichtigung des Ausbreitungseffekts (oder Einen- 
gungseffekts) durch die Anderung der Eigenschaften scheint bei der Interpretation von Festbettexperi- 
menten wichtig zu sein, wenn beispielsweise Warmeiibergangskoeffizienten aus derartigen Experimenten 

bestimmt werden. 

TEI-IJIOl-IEPEHOC B @MJIbTPYIOIIIMX HEI-IOflBMTHbIX CJIOIIX C 3ABMCIIIIIMMM OT 
TEMl-IEPATYPbI @W3AYECKBMkI CBOnCTBAMkI. 3@@EKTbI C)KATMIl I4 

PACIBMPEHIIJI 

AHHOT84HR-~3yYafOTCII TeMIIepaTypHbIe BOnHbI, B03HuKalO,IUIe B "nOTHOM CnOC npu u3MeHeHuu 

BXO~HO~~ TeMnepaTypbr &inbTpymrueFicn XG~~KO~TH.@~~M~ BOTH u HX nerjopwauun npu pacnpocTpa- 

HeHuH MOryT Cy"@ZCTBe"HO 3aBuCeTb OT u3MeHeHUR yL.,enbHOfi TennOCMKOCTu A o6bebfa C TeMnepaTy- 

pOti. TeopeTuqecKu paCCMOTpeHb1 nBa Ka'IeCTBeHHO pa3nu'iaIOIIWXCK pe)KHMa. HanpaMep, B Cny'iaC 

BO3paCTaHu5, TeMnepaTypbI BO3~yXa,rIpOXOnKLL,erO 'IepC3 CnOf4 CTeKnllHHbIX UIapHKOB, OT 20 a0 100°C 
pe3ynbTupywmaa TeMnepaTypHar BonHa aanaerca “pactmipmomelcr” a TOM CMbICne, 'iTO IIpu paC- 

,lpOCTpaHeHuu IIOn nefiCTBueM U3MeHeHUII IlnOTHOCTCii A TCIlnOeMK0CTel-i o6eHx +a3 OHa BCe 6onbme 
A 6onbme pacmupneTca. nOn06HbIii, HO 6onee cna6b+i, 3@+2KT HMCCT MCCTO WI,, CHCTCM 

CO,+TeK,UIHHbIe LUapuKu u BOna+TeKnKHHbIe IUapHKA. HaoGopor, a Cny'iaC @inbTpaI@iu nByOKHCu 
yrnepona ',epe3 CnOfi CBuHUOBblX IIIapHKOB ITpOnBnKeTCK “C~uMalOLUufii" 3++eKT, IlpuBOLWUufi K 

yCTOi+iuBOii u pe3KO8 “ynapHOfi BOnHe".TeHneHlW 06paTHa,KOrna BMCCTOHarpeBa paCCMaTpHBaCTC,l 

OXnaXCnCHuC. 06HapyWZHHbIC 3+j,CKTbl C)KaTuII u paCU.lupeHuR IIpOunJIEOCTpupOBaHbI C IlOMOIIlbM 

yI'tpOIIleHHOii MOJIenU 6e3 y9eTa KOHBeKTUBHOfi JWiCnepCuu H TennOBOrO COIIpOTuBnCHuS MexKny 

+a3aMu. KaWCTBeHHOe BnRIlHue paClLIupeHuSl CpaBHuBaeTCK IIyTeM OWHKH COOTBeTCTByIoIIWiX 'iuCen 

neKne C BKnaLXOM,BHOCHMblM KOHBeKTrtBHOii OCeBOii nuCIIepCuefi.B JaBuCuMOCTu OT pa6owx yCnOBufi 

3@eKT MomeT 6bITb npeo6nanaiomriM (B OCHOBHOM B cuCTeMax ra3TBepnoe Ten0 u/ma npu HH~KAX 

3HaWHHIIX WfCeJJ PefiHOnbACa)unu npeHe6pexHMO ManbIM(B OCHOBHOM BCuCTeMaX )KHnKOCTb-TBepnOe 

Ten0 u/unu npu 6onbluux wcnax PetiHonbnca). YgeT s@@KTa pacruupeHua(unu c~aTua),Bbt3BaHHbrA 

U3MeHeHUeM CBOfiCTB, HeO6XOnUM "pU paCCMOTpCHUU pC3ynbTaTOB 3KCWpUMCHTOB C HC"OnBUxHblM 

cnoerd, HanpuMep,npu oueHKeKo3+jnwieHToBTennonepeHoca. 


